Statisticians are largely focused on developing methods that perform well in a frequentist sense -- even the Bayesians. But the widely-publicized replication crisis suggests that these performance guarantees alone are not enough to instill confidence in scientific discoveries. In addition to reliably detecting hypotheses that are (in)compatible with data, investigators require methods that can probe for hypotheses that are actually supported by the data. In this paper, we demonstrate that valid inferential models (IMs) achieve both performance and probativeness properties and we offer a powerful new result that ensures the IM's probing is reliable. We also compare and contrast the IM's dual performance and probativeness abilities with that of Deborah Mayo's severe testing framework.


翻译:基于可能性理论的统计推断提供性能和可靠性保证 翻译后的摘要: 统计学家主要关注在经频率意义下表现良好的方法的开发——甚至包括贝叶斯派。但是广为人知的复制危机表明,仅有这些性能保证还不足以为科学发现带来信心。除了能够可靠地检测和数据兼容或不兼容的假设之外,研究人员还需要能够探究哪些假设实际上被数据所支持的方法。在本文中,我们展示了有效的推断模型(IMs)可以实现性能保证和可靠性保证,并提供了一个强大的新结果,确保了IM的探测是可靠的。我们还将IM的双重性能保证和可靠性能力与Deborah Mayo的严格检验框架进行了比较和对比。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
18+阅读 · 2021年3月16日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员