The effect of removing gamification elements from interactive systems has been a long-standing question in gamification research. Early work and foundational theories raised concerns about the endurance of positive effects and the emergence of negative ones. Yet, nearly a decade later, no work to date has sought consensus on these matters. Here, I offer a rapid review on the state of the art and what is known about the impact of removing gamification. A small corpus of 8 papers published between 2012 and 2020 were found. Findings suggest a mix of positive and negative effects related to removing gamification. Significantly, insufficient reporting, methodological weaknesses, limited measures, and superficial interpretations of "negative" results prevent firm conclusions. I offer a research agenda towards better understanding the nature of gamification removal. I end with a call for empirical and theoretical work on illuminating the effects that may linger after systems are un-gamified.


翻译:早期的工作和基础理论使人们对积极效果的耐力和消极效果的出现表示关切;然而,近十年后,迄今没有就这些事项寻求共识;在这里,我快速审查了最新情况和已知的取消加工业的影响;在2012年至2020年期间,发现了一小堆8篇论文,其中一文为2012年至2020年出版;调查结果表明,消除加工业的正面和负面效应是混合在一起的。重要的是,报告不足、方法弱点、措施有限和对“负面”结果的表面解释妨碍了得出明确的结论。我提出了一个研究议程,以更好地了解清除加工业的性质。我最后呼吁开展实验和理论工作,以说明在系统被解密后可能遗留下来的影响。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
34+阅读 · 2021年4月9日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2020年7月21日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
34+阅读 · 2021年4月9日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员