We analyze the (parameterized) computational complexity of "fair" variants of bipartite many-to-one matching, where each vertex from the "left" side is matched to exactly one vertex and each vertex from the "right" side may be matched to multiple vertices. We want to find a "fair" matching, in which each vertex from the right side is matched to a "fair" set of vertices. Assuming that each vertex from the left side has one color modeling its attribute, we study two fairness criteria. In one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively. We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. To establish the correctness of our integer programs, we prove a new separation result, inspired by Frank's separation theorem [Frank, Discrete Math. 1982], which may also be of independent interest. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.
翻译:我们想要找到一个“ 公平” 匹配的“ 公平” 变量的计算复杂性。 我们假设左侧的每个顶端有一个颜色的特性模型, 我们研究两个公平标准。 其中之一, 我们认为一个顶端设置是公平的, 如果任何两种颜色, 其发生次数之间的差异不会超过给定的门槛。 当找到学生和学院、选民和选民以及申请者和公司之间的多个对齐时, 公平是相关的。 这里的颜色可以分别建模社会人口特征、 党员和资格。 我们从左边的每个顶端都有一个颜色的颜色模型。 我们研究两个公平标准。 其中之一, 我们认为一个顶端设置是公平的, 如果对任何一个颜色来说, 其发生次数的差异不会超过给定的门槛。 当找到学生和学院、 选民和选区以及申请者和公司之间的多个对齐匹配时, 公平匹配。 这里的颜色可以分别建模社会人口特征、 党员和资格的模型。 我们显示, 找到一个平分级的对等级匹配, 甚至是三个颜色和最高五度。 我们的主要贡献是固定的颜色的颜色配置设计,, 包括每平整级程程程程程程程程程程程程中, 我们的排序的排序, 我们的排序的排序,, 我们的排序的排序的排序的排序,, 的排序的排序的排序的排序的排序的排序的排序,, 。