Motion in-betweening (MIB) is a process of generating intermediate skeletal movement between the given start and target poses while preserving the naturalness of the motion, such as periodic footstep motion while walking. Although state-of-the-art MIB methods are capable of producing plausible motions given sparse key-poses, they often lack the controllability to generate motions satisfying the semantic contexts required in practical applications. We focus on the method that can handle pose or semantic conditioned MIB tasks using a unified model. We also present a motion augmentation method to improve the quality of pose-conditioned motion generation via defining a distribution over smooth trajectories. Our proposed method outperforms the existing state-of-the-art MIB method in pose prediction errors while providing additional controllability.
翻译:中间运动( MIB) 是一个在给定的开始和目标构成之间产生中间骨骼运动的过程, 同时保持运动的自然性, 比如在行走时的定期脚步运动。 虽然最先进的MIB 方法在关键因素稀少的情况下能够产生合理的动作, 但是它们往往缺乏控制性来产生符合实际应用所要求的语义背景的动作。 我们侧重于能够用一个统一的模型处理表面或语义固定的 MIB 任务的方法。 我们还提出了一个运动增强方法,通过确定平滑轨轨迹的分布来提高造型运动生成的质量。 我们建议的方法比现有的最先进的MIB 方法更能产生预测错误,同时提供额外的控制性。