Towards human-like dialogue systems, current emotional dialogue approaches jointly model emotion and semantics with a unified neural network. This strategy tends to generate safe responses due to the mutual restriction between emotion and semantics, and requires rare emotion-annotated large-scale dialogue corpus. Inspired by the "think twice" behavior in human dialogue, we propose a two-stage conversational agent for the generation of emotional dialogue. Firstly, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics. Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis. Experimental results on the DailyDialog and EmpatheticDialogues datasets demonstrate that the proposed conversational outperforms the comparison models in emotion generation and maintains the semantic performance in automatic and human evaluations.
翻译:建立像人一样的对话系统, 当前的情感对话方法通过统一的神经网络, 共同模拟情感和语义。 由于情感和语义之间的相互限制, 该战略往往产生安全的反应, 并且需要罕见的情感附加说明的大型对话程序。 在人类对话中的“ 思考两次” 行为的启发下, 我们为情感对话的产生提出一个两阶段的谈话工具。 首先, 没有情感附加说明的对话程序受过培训的对话模式产生一种符合背景语义的原型反应。 其次, 第一阶段原型由可控的情感改进器和感应假设来修改。 DailyDialog 和 EmpathicDloges 数据集的实验结果显示, 提议的谈话比情感生成中的比较模式要差, 并在自动和人文评估中保持语义性表现 。