Wearable devices such as smartwatches, fitness trackers, and blood-pressure monitors process, store, and communicate sensitive and personal information related to the health, life-style, habits and interests of the wearer. This data is exchanged with a companion app running on a smartphone over a Bluetooth connection. In this work, we investigate what can be inferred from the metadata (such as the packet timings and sizes) of encrypted Bluetooth communications between a wearable device and its connected smartphone. We show that a passive eavesdropper can use traffic-analysis attacks to accurately recognize (a) communicating devices, even without having access to the MAC address, (b) human actions (e.g., monitoring heart rate, exercising) performed on wearable devices ranging from fitness trackers to smartwatches, (c) the mere opening of specific applications on a Wear OS smartwatch (e.g., the opening of a medical app, which can immediately reveal a condition of the wearer), (d) fine-grained actions (e.g., recording an insulin injection) within a specific application that helps diabetic users to monitor their condition, and (e) the profile and habits of the wearer by continuously monitoring her traffic over an extended period. We run traffic-analysis attacks by collecting a dataset of Bluetooth traces of multiple wearable devices, by designing features based on packet sizes and timings, and by using machine learning to classify the encrypted traffic to actions performed by the wearer. Then, we explore standard defense strategies; we show that these defenses do not provide sufficient protection against our attacks and introduce significant costs. Our research highlights the need to rethink how applications exchange sensitive information over Bluetooth, to minimize unnecessary data exchanges, and to design new defenses against traffic-analysis tailored to the wearable setting.
翻译:智能观察、 健身跟踪器、 血液压力监测器等可穿戴的装置。 我们显示, 被动的窃听器可以使用交通分析攻击来准确识别 (a) 通信设备, 即使无法访问磨损器地址, 也无法存储和传递与磨损器健康、 生活风格、 习惯和兴趣有关的敏感和个人信息。 此数据会与在蓝牙连接的智能手机上运行的智能手机连接的随身应用程序交换。 在这项工作中, 我们调查了从数据元数据( 例如, 包时间和大小) 中可以推断出什么( 例如, 包时间和大小) 加密器设备及其连接的智能手机。 我们显示, 被动窃听器窃听器可以立即显示磨损器的状态, (d) 智能分析器袭击可以准确识别 (a) 通信设备, 即使无法访问 MAC 地址 地址, (b) (b) 人类行动( 例如, 监测心力攻击, 监测心脏攻击, 练习, 练习, 练习动作动作动作动作动作) 在具体应用中, 收集时间段内, (c) 显示我们运行的 智能智能智能智能智能智能智能智能 的 的 智能 的 的 的 运行的 智能 智能 显示, 我们的 运行中, 我们的 运行的 运行的 运行的 运行的 运行的 运行的 运行的游戏的动作的动作的动作, 我们的 运行中, 运行中, 运行的 运行中, 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 。 运行的 运行的 运行的, 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 。, 我们的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 运行的 。