Circadian rhythm is the natural biological cycle manifested in human daily routines. A regular and stable rhythm is found to be correlated with good physical and mental health. With the wide adoption of mobile and wearable technology, many types of sensor data, such as GPS and actigraphy, provide evidence for researchers to objectively quantify the circadian rhythm of a user and further use these quantified metrics of circadian rhythm to infer the user's health status. Researchers in computer science and psychology have investigated circadian rhythm using various mobile and wearable sensors in ecologically valid human sensing studies, but questions remain whether and how different data types produce different circadian rhythm results when simultaneously used to monitor a user. We hypothesize that different sensor data reveal different aspects of the user's daily behavior, thus producing different circadian rhythm patterns. In this paper we focus on two data types: GPS and accelerometer data from smartphones. We used smartphone data from 225 college student participants and applied four circadian rhythm characterization methods. We found significant and interesting discrepancies in the rhythmic patterns discovered among sensors, which suggests circadian rhythms discovered from different personal tracking sensors have different levels of sensitivity to device usage and aspects of daily behavior.


翻译:环形节律是人类日常日常活动所表现的自然生物循环。一种经常和稳定的节律与良好的身心健康息息相关。随着移动和可磨损技术的广泛采用,许多类型的传感器数据,例如全球定位系统和行为法,为研究人员提供了证据,以客观地量化用户的环形节律,并进一步使用这些可计量的环形节律计量标准来推断用户的健康状况。计算机科学和心理学研究人员利用生态上有效的人类遥感研究中各种移动和可磨过的传感器对环形节律进行了调查,但仍然存在各种问题:不同数据类型是否和如何产生不同的环形节律结果,同时用于监测用户。我们假设,不同传感器数据揭示了用户日常行为的不同方面,从而产生了不同的环形节律模式。在本论文中,我们侧重于两种数据类型:全球定位系统和智能手机的感光度计数据。我们使用了225名大学生参与者的智能手机数据,并应用了四种环形节律特征鉴定方法。我们发现,在传感器中发现的节律模式存在显著和有趣的差异,表明传感器的感官的感应感官的感官的感应达到不同程度。

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员