Significant advances in maximum flow algorithms have changed the relative performance of various approaches to isotonic regression. If the transitive closure is given then the standard approach used for $L_0$ (Hamming distance) isotonic regression (finding anti-chains in the transitive closure of the violator graph), combined with new flow algorithms, gives an $L_1$ algorithm taking $\tilde{\Theta}(n^2+n^\frac{3}{2} \log U )$ time, where $U$ is the maximum vertex weight. The previous fastest was $\Theta(n^3)$. Similar results are obtained for $L_2$ and for $L_p$ approximations, $1 < p < \infty$. For weighted points in $d$-dimensional space with coordinate-wise ordering, $d \geq 3$, $L_0, L_1$ and $L_2$ regressions can be found in only $o(n^\frac{3}{2} \log^d n \log U)$ time, improving on the previous best of $\tilde{\Theta}(n^2 \log^d n)$.


翻译:最大流算法的重大进步改变了各种同位素回归方法的相对性能。 如果给出了中转封闭(Hamming learth) 等离子回归(在违反者图的中转封闭中发现反链) 的标准方法,加上新的流算法, 给出了美元1美元的算法, 使用$\ tilde\ theta}(n2+n\\\\\\frac{3\\2}\log U) 时间, 美元是最高脊椎重量。 之前最快的方法是 $\ Theta(n) 3\\\\\\\ n3美元。 类似的结果是用$_ 2美元和 $_ p$的近似结果, 1 < p < \ infty $。 对于美元空间的加权点, 以协调方式排序, $qq 3美元、 美元 0. 0, L_1美元和 $L_2$的回归只能在$o(n\\\\\\\log2} 美元的最佳时间上改进 美元。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员