There exist two notions of equivalence of behavior between states of a Labelled Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered as an appropriate generalization to continuous spaces of Larsen and Skou's probabilistic bisimilarity, while the second one is characterized by a natural logic. C. Zhou expressed state bisimilarity as the greatest fixed point of an operator $\mathcal{O}$, and thus introduced an ordinal measure of the discrepancy between it and event bisimilarity. We call this ordinal the "Zhou ordinal" of $\mathbb{S}$, $\mathfrak{Z}(\mathbb{S})$. When $\mathfrak{Z}(\mathbb{S})=0$, $\mathbb{S}$ satisfies the Hennessy-Milner property. The second author proved the existence of an LMP $\mathbb{S}$ with $\mathfrak{Z}(\mathbb{S}) \geq 1$ and Zhou showed that there are LMPs having an infinite Zhou ordinal. In this paper we show that there are LMPs $\mathbb{S}$ over separable metrizable spaces having arbitrary large countable $\mathfrak{Z}(\mathbb{S})$ and that it is consistent with the axioms of $\mathit{ZFC}$ that there is such a process with an uncountable Zhou ordinal.
翻译:在Labelled Markov 进程( LMP) 的状态中, 存在两种等同行为的概念 : 状态双差和事件双差。 第一个可以被视为对 Larsen 和 Skou 概率双差连续空间的适当概括, 而第二个则具有自然逻辑特征 。 C. Zhou 表示状态双差是操作员的最大固定点 $\ mathcal{ O} 美元, 从而引入了它与事件双差的交替度量 。 我们称它为“ zou ordinal $\ mathbb{S} $ 、 $\ mathfrak} (\ mathbb{S} ) 和 Skoublefr=0 美元。 当 $\ mathb* (mathb{S} =0, 美元表示运行者最大固定点 。 第二作者证明了存在一个 LMP $\ mark_ $ (max) 美元, 和 rublex 美元 。