Video instance segmentation (VIS) aims to segment and associate all instances of predefined classes for each frame in videos. Prior methods usually obtain segmentation for a frame or clip first, and then merge the incomplete results by tracking or matching. These methods may cause error accumulation in the merging step. Contrarily, we propose a new paradigm -- Propose-Reduce, to generate complete sequences for input videos by a single step. We further build a sequence propagation head on the existing image-level instance segmentation network for long-term propagation. To ensure robustness and high recall of our proposed framework, multiple sequences are proposed where redundant sequences of the same instance are reduced. We achieve state-of-the-art performance on two representative benchmark datasets -- we obtain 47.6% in terms of AP on YouTube-VIS validation set and 70.4% for J&F on DAVIS-UVOS validation set.


翻译:视频实例分解(VIS) 旨在将每个框的预定义类别的所有实例进行分解和组合。 先前的方法通常先为框架或剪辑获得分解, 然后通过跟踪或匹配将不完整的结果合并。 这些方法可能会导致合并步骤中的错误积累。 相反, 我们提出一个新的模式 -- -- 提议- REduce, 以单步生成输入视频的完整序列。 我们进一步在现有图像级别实例分解网络上建立一个序列传播头, 用于长期传播。 为了保证我们提议的框架的稳健性和高调回想起, 我们建议了多个序列, 以减少同一实例的冗余序列。 我们在两个具有代表性的基准数据集上取得最先进的表现 -- -- 我们获得了YouTube-VIS验证集中的AP47.6%, DAVIS- UVOS验证集中的J&F70.4%。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Semantic Grouping Network for Video Captioning
Arxiv
3+阅读 · 2021年2月3日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员