Analyzing and effectively communicating the efficacy and toxicity of treatment is the basis of risk benefit analysis (RBA). More efficient and objective tools are needed. We apply Chauhan Weighted Trajectory Analysis (CWTA) to perform RBA with superior objectivity, power, and clarity. We used CWTA to perform 1000-fold simulations of RCTs using ordinal endpoints for both treatment efficacy and toxicity. RCTs were simulated with 1:1 allocation at defined sample sizes and hazard ratios. We studied the simplest case of 3 levels each of toxicity and efficacy and the general case of the advanced cancer trial, with efficacy graded by five RECIST 1.1 health statuses and toxicity by the six-point CTCAE scale (6 x 5 matrix). The latter model was applied to a real-world dose escalation phase I trial in advanced cancer. Simulations in both the 3 x 3 and the 6 x 5 advanced cancer matrix confirmed that drugs with both superior efficacy and toxicity profiles synergize for greater statistical power with CWTA-RBA. The CWTA-RBA 6 x 5 matrix reduced sample size requirements over CWTA efficacy-only analysis. Application to the dose finding phase I clinical trial provided objective, statistically significant validation for the selected dose. CWTA-RBA, by incorporating both drug efficacy and toxicity, provides a single test statistic and plot that analyzes and effectively communicates therapeutic risks and benefits. CWTA-RBA requires fewer patients than CWTA efficacy-only analysis when the experimental drug is both more effective and less toxic. CWTA-RBA facilitates the objective and efficient assessment of new therapies throughout the drug development pathway. Furthermore, several advantages over competing tests in communicating risk-benefit will assist regulatory review, clinical adoption, and understanding of therapeutic risks and benefits by clinicians and patients alike.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员