In this paper, we introduce the NameRec* task, which aims to do highly accurate and fine-grained person name recognition. Traditional Named Entity Recognition models have good performance in recognising well-formed person names from text with consistent and complete syntax, such as news articles. However, there are rapidly growing scenarios where sentences are of incomplete syntax and names are in various forms such as user-generated contents and academic homepages. To address person name recognition in this context, we propose a fine-grained annotation scheme based on anthroponymy. To take full advantage of the fine-grained annotations, we propose a Co-guided Neural Network (CogNN) for person name recognition. CogNN fully explores the intra-sentence context and rich training signals of name forms. To better utilize the inter-sentence context and implicit relations, which are extremely essential for recognizing person names in long documents, we further propose an Inter-sentence BERT Model (IsBERT). IsBERT has an overlapped input processor, and an inter-sentence encoder with bidirectional overlapped contextual embedding learning and multi-hop inference mechanisms. To derive benefit from different documents with a diverse abundance of context, we propose an advanced Adaptive Inter-sentence BERT Model (Ada-IsBERT) to dynamically adjust the inter-sentence overlapping ratio to different documents. We conduct extensive experiments to demonstrate the superiority of the proposed methods on both academic homepages and news articles.


翻译:在本文中,我们引入了 NameRec* 任务, 目的是进行非常准确和精细的人名识别。 传统命名实体识别模型在通过一致和完整的语法(如新闻文章)从文本中识别完善的人名方面表现良好, 然而, 正在迅速出现一些情况, 判决不完全的语法, 姓名以多种形式出现, 如用户生成的内容和学术主页等。 为了在此背景下处理姓名识别问题, 我们提议了一个基于人类语义比例的细微辨别方案。 为了充分利用细微的描述, 我们提议了一个共同制导的神经系统网络(CogNNN), 用于识别个人姓名。 CogNN 充分探索了名称表格的内涵背景和丰富的培训信号。 为了更好地利用对长期文件中识别个人名极为重要的内涵背景和隐含关系。 我们进一步提议了一个Inter- sent BERT 模型( ISBERT) 。 为了充分利用精细的语义说明, 我们提议了一个双向双向双向的双向双向双向的双向内部文件的双向内部学习和双向内部调整。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员