The ability to extrapolate, or generalize, from observed to new related environments is central to any form of reliable machine learning, yet most methods fail when moving beyond $i.i.d$ data. In some cases, the reason lies in a misappreciation of the causal structure that governs the data, and in particular as a consequence of the influence of unobserved confounders that drive changes in observed distributions and distort correlations. In this paper, we argue for defining generalization with respect to a broader class of distribution shifts (defined as arising from interventions in the underlying causal model), including changes in observed, unobserved and target variable distributions. We propose a new robust learning principle that may be paired with any gradient-based learning algorithm. This learning principle has explicit generalization guarantees, and relates robustness with certain invariances in the causal model, clarifying why, in some cases, test performance lags training performance. We demonstrate the empirical performance of our approach on healthcare data from different modalities, including image and speech data.
翻译:从观察到的相关环境向新的相关环境进行外推或概括分析的能力,对于任何形式的可靠机器学习至关重要,但大多数方法在超越美元数据时都是失败的。在某些情况下,原因在于对数据因果结构的错误理解,特别是由于未观察到的混淆因素的影响,驱动观察到的分布变化并扭曲了相关关系。在本文件中,我们主张界定较广泛的分配变化类别(定义为由基本因果模式的干预措施产生的)的概括性,包括观测到的、未观测到的和目标变量分布的变化。我们提出了一个新的强有力的学习原则,可以与任何基于梯度的学习算法相匹配。这一学习原则有明确的概括性保证,并将稳健性与因果模式的某些变异性相联系,澄清为什么在某些情况下测试业绩滞后培训绩效。我们展示了我们从不同模式,包括图像和语音数据的角度对保健数据采取的方法的经验性表现。