We study the problem of embedding edgeless nodes such as users who newly enter the underlying network, while using graph neural networks (GNNs) widely studied for effective representation learning of graphs. Our study is motivated by the fact that GNNs cannot be straightforwardly adopted for our problem since message passing to such edgeless nodes having no connections is impossible. To tackle this challenge, we propose Edgeless-GNN, a novel inductive framework that enables GNNs to generate node embeddings even for edgeless nodes through unsupervised learning. Specifically, we start by constructing a proxy graph based on the similarity of node attributes as the GNN's computation graph defined by the underlying network. The known network structure is used to train model parameters, whereas a topology-aware loss function is established in such a way that our model judiciously learns the network structure by encoding positive, negative, and second-order relations between nodes. For the edgeless nodes, we inductively infer embeddings by expanding the computation graph. By evaluating the performance of various downstream machine learning tasks, we empirically demonstrate that Edgeless-GNN exhibits (a) superiority over state-of-the-art inductive network embedding methods for edgeless nodes, (b) effectiveness of our topology-aware loss function, (c) robustness to incomplete node attributes, and (d) a linear scaling with the graph size.
翻译:我们研究嵌入无边节点的问题,比如新进入基本网络的用户,而同时使用为有效地代表图形学习而广泛研究的图形神经网络(GNNS),我们的研究动力是,由于信息传递到没有连接的无边节点是不可能的,因此无法直接采纳我们的问题。为了应对这一挑战,我们建议Edgeless-GNNN,这是一个新的诱导框架,使GNNS能够通过不受监督的学习为无边节点产生节点嵌入。具体地说,我们首先根据与GNNN的计算图相似的节点属性建立一个代理图。我们使用已知的网络结构来培训模型参数,而表层意识损失功能的建立方式使我们的模型能够明智地通过将正、负、正和次阶关系结合起来来学习网络结构。对于无边际节点的节点,我们通过扩大计算图表来细化地嵌入。通过评估各种下游机器学习任务的业绩,我们从实验性地展示了顶层网络的底部(不深层-直层-直层-直观),我们用不深层-直观的图(我们不深层-GNNNNN)显示的顶部-直层-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-