Our work addresses two important issues with recurrent neural networks: (1) they are over-parameterized, and (2) the recurrence matrix is ill-conditioned. The former increases the sample complexity of learning and the training time. The latter causes the vanishing and exploding gradient problem. We present a flexible recurrent neural network model called Kronecker Recurrent Units (KRU). KRU achieves parameter efficiency in RNNs through a Kronecker factored recurrent matrix. It overcomes the ill-conditioning of the recurrent matrix by enforcing soft unitary constraints on the factors. Thanks to the small dimensionality of the factors, maintaining these constraints is computationally efficient. Our experimental results on seven standard data-sets reveal that KRU can reduce the number of parameters by three orders of magnitude in the recurrent weight matrix compared to the existing recurrent models, without trading the statistical performance. These results in particular show that while there are advantages in having a high dimensional recurrent space, the capacity of the recurrent part of the model can be dramatically reduced.


翻译:我们的工作涉及与经常性神经网络有关的两个重要问题:(1) 神经网络过于独立,(2) 重复的矩阵条件不当,前者增加了学习和培训时间的样本复杂性,后者导致梯度问题消失和爆炸。我们提出了一个灵活的经常性神经网络模型,称为Kronecker 常规单元(KRU)。 Kronecker 常规单元(KRU)通过一个克伦贝克系数的反复矩阵实现RNN的参数效率。它通过对各种因素实施软统一的制约,克服了经常性矩阵的调节不力。由于这些因素规模小,保持这些制约是计算效率高的。我们在七个标准数据集上的实验结果表明,与现有的经常性模型相比, KRU可以将经常性重量矩阵中的参数数量减少3个数量级,而不用交换统计性能。这些结果特别表明,虽然拥有高维度的经常性空间具有优势,但该模型经常部分的容量可以大大降低。

0
下载
关闭预览

相关内容

在反向传播过程中需要对激活han函数进行求导,如果导数大于1,那么随着网络层数的增加梯度更新将会朝着指数爆炸的方式增加这就是梯度爆炸。同样如果导数小于1,那么随着网络层数的增加梯度更新信息会朝着指数衰减的方式减少这就是梯度消失。
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月25日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员