The Boolean Kalman Filter and associated Boolean Dynamical System Theory have been proposed to study the spread of infection on computer networks. Such models feature a network where attacks propagate through, an intrusion detection system that provides noisy signals of the true state of the network, and the capability of the defender to clean a subset of computers at any time. The Boolean Kalman Filter has been used to solve the optimal estimation problem, by estimating the hidden true state given the attack-defense dynamics and noisy observations. However, this algorithm is infeasible because it runs in exponential time and space with respect to the network size. We address this feasibility problem by proposing a mean-field estimation approach, which is inspired by the epidemic modeling literature. Although our approach is heuristic, we prove that our estimator exactly matches the optimal estimator in certain non-trivial cases. We conclude by using simulations to show both the run-time improvement and estimation accuracy of our approach.
翻译:暂无翻译