We propose a novel framework for comparing 3D human shapes under the change of shape and pose. This problem is challenging since 3D human shapes vary significantly across subjects and body postures. We solve this problem by using a Riemannian approach. Our core contribution is the mapping of the human body surface to the space of metrics and normals. We equip this space with a family of Riemannian metrics, called Ebin (or DeWitt) metrics. We treat a human body surface as a point in a "shape space" equipped with a family of Riemmanian metrics. The family of metrics is invariant under rigid motions and reparametrizations; hence it induces a metric on the "shape space" of surfaces. Using the alignment of human bodies with a given template, we show that this family of metrics allows us to distinguish the changes in shape and pose. The proposed framework has several advantages. First, we define family of metrics with desired invariant properties for the comparison of human shape. Second, we present an efficient framework to compute geodesic paths between human shape given the chosen metric. Third, this framework provides some basic tools for statistical shape analysis of human body surfaces. Finally, we demonstrate the utility of the proposed framework in pose and shape retrieval of human body.
翻译:我们提出了一个新的框架,用于比较形状和形状变化下的3D人类形状。 这个问题具有挑战性, 因为3D人类形状在主体和身体姿势上差异很大。 我们通过使用Riemannian 方法解决这个问题。 我们的核心贡献是绘制人体表面与测量和正常空间的分布图。 我们用一个叫Ebin( 或DeWitt) 的测量仪来将这个空间配置成一个称为Rieemmanian 度量的“ 形状空间” 的“ 形状空间” 。 我们把人体表面作为“ 形状” 的“ 形状空间” 。 我们用僵硬的动作和重新校正的形状来构建一个矩阵, 从而在“ 形状空间” 上生成一个“ 形状空间” 。 我们用一个给定的模板对人体表面进行测量。 我们用这个矩阵来区分形状和形状的变化。 提议的框架有几个优点。 首先, 我们用一个带有理想的变量的矩阵来定义人类形状的矩阵。 其次, 我们提出一个有效的框架, 在人类表面的形状中进行地理图象形的测量路径路径, 提供了我们所选择的基本工具 。