Prediction over event sequences is critical for many real-world applications in Information Retrieval and Natural Language Processing. Future Event Generation (FEG) is a challenging task in event sequence prediction because it requires not only fluent text generation but also commonsense reasoning to maintain the logical coherence of the entire event story. In this paper, we propose a novel explainable FEG framework, Coep. It highlights and integrates two types of event knowledge, sequential knowledge of direct event-event relations and inferential knowledge that reflects the intermediate character psychology between events, such as intents, causes, reactions, which intrinsically pushes the story forward. To alleviate the knowledge forgetting issue, we design two modules, Im and Gm, for each type of knowledge, which are combined via prompt tuning. First, Im focuses on understanding inferential knowledge to generate commonsense explanations and provide a soft prompt vector for Gm. We also design a contrastive discriminator for better generalization ability. Second, Gm generates future events by modeling direct sequential knowledge with the guidance of Im. Automatic and human evaluation demonstrate that our approach can generate more coherent, specific, and logical future events.
翻译:对事件序列的预测对于信息检索和自然语言处理中的许多真实世界应用来说至关重要。未来事件生成(FEG)是一项挑战性的任务,因为它不仅需要流畅的文本生成,而且需要常识推理来维持整个事件故事的逻辑一致性。在本文中,我们提出了一个新颖的、可解释的FEG框架,Coep。它突出并整合了两种类型的事件知识,即直接事件-事件关系和推断知识,这些知识反映了事件之间的中间字符心理学,例如意图、原因、反应,这些内在地推动故事向前发展。为了减轻知识遗忘的问题,我们设计了两种模块,即Im和Gm,这些模块是通过即时调整组合起来的。首先,Im侧重于理解推断性知识,以产生共通性解释,并为Gm提供一种软化的快速矢量。我们还设计了一种对比性歧视工具,以更好地概括化能力。第二,Gm通过用Im的指南模拟直接的顺序知识来生成未来事件。自动和人类评估表明,我们的方法可以产生更加连贯、具体和合乎逻辑的事件。