This paper presents a new reachability analysis tool to compute an interval over-approximation of the output set of a feedforward neural network under given input uncertainty. The proposed approach adapts to neural networks an existing mixed-monotonicity method for the reachability analysis of dynamical systems and applies it to all possible partial networks within the given neural network. This ensures that the intersection of the obtained results is the tightest interval over-approximation of the output of each layer that can be obtained using mixed-monotonicity. Unlike other tools in the literature that focus on small classes of piecewise-affine or monotone activation functions, the main strength of our approach is its generality in the sense that it can handle neural networks with any Lipschitz-continuous activation function. In addition, the simplicity of the proposed framework allows users to very easily add unimplemented activation functions, by simply providing the function, its derivative and the global extrema and corresponding arguments of the derivative. Our algorithm is tested and compared to five other interval-based tools on 1000 randomly generated neural networks for four activation functions (ReLU, TanH, ELU, SiLU). We show that our tool always outperforms the Interval Bound Propagation method and that we obtain tighter output bounds than ReluVal, Neurify, VeriNet and CROWN (when they are applicable) in 15 to 60 percent of cases.
翻译:本文提供了一个新的可获取性分析工具, 用于计算进料不确定性下的进料神经网络进料神经网络输出组的间隔超准值。 提议的方法对神经网络进行调整, 用于动态系统的可获取性分析, 并将其应用到给定神经网络中所有可能的局部网络。 这样可以确保获得的结果的交叉点是最接近的超准度, 即通过混合- 分子性获得的每个层输出的输出的间隔值。 不同于文献中侧重于小类小类的粉末和单体激活功能的其他工具。 我们方法的主要力量在于其一般性, 即它能够用任何利普施维茨的激活功能处理神经网络。 此外, 提议的框架的简单性允许用户很容易地添加未执行的激活功能, 仅仅提供函数、 其衍生物和全球外观以及衍生物的相应参数。 我们的算法经过测试, 与在1000 随机生成的神经网络启动功能上的其他5个基于间隔的工具不同, 用于四种激活功能( REL, Tan- L) 和Sebrax 的输出, 15 Restal 、 我们的Seal- Resting 工具显示Sistring 的Sistring 15 Restal 工具, 。