This paper presents a new reachability analysis tool to compute an interval over-approximation of the output set of a feedforward neural network under given input uncertainty. The proposed approach adapts to neural networks an existing mixed-monotonicity method for the reachability analysis of dynamical systems and applies it to all possible partial networks within the given neural network. This ensures that the intersection of the obtained results is the tightest interval over-approximation of the output of each layer that can be obtained using mixed-monotonicity. Unlike other tools in the literature that focus on small classes of piecewise-affine or monotone activation functions, the main strength of our approach is its generality in the sense that it can handle neural networks with any Lipschitz-continuous activation function. In addition, the simplicity of the proposed framework allows users to very easily add unimplemented activation functions, by simply providing the function, its derivative and the global extrema and corresponding arguments of the derivative. Our algorithm is tested and compared to five other interval-based tools on 1000 randomly generated neural networks for four activation functions (ReLU, TanH, ELU, SiLU). We show that our tool always outperforms the Interval Bound Propagation method and that we obtain tighter output bounds than ReluVal, Neurify, VeriNet and CROWN (when they are applicable) in 15 to 60 percent of cases.


翻译:本文提供了一个新的可获取性分析工具, 用于计算进料不确定性下的进料神经网络进料神经网络输出组的间隔超准值。 提议的方法对神经网络进行调整, 用于动态系统的可获取性分析, 并将其应用到给定神经网络中所有可能的局部网络。 这样可以确保获得的结果的交叉点是最接近的超准度, 即通过混合- 分子性获得的每个层输出的输出的间隔值。 不同于文献中侧重于小类小类的粉末和单体激活功能的其他工具。 我们方法的主要力量在于其一般性, 即它能够用任何利普施维茨的激活功能处理神经网络。 此外, 提议的框架的简单性允许用户很容易地添加未执行的激活功能, 仅仅提供函数、 其衍生物和全球外观以及衍生物的相应参数。 我们的算法经过测试, 与在1000 随机生成的神经网络启动功能上的其他5个基于间隔的工具不同, 用于四种激活功能( REL, Tan- L) 和Sebrax 的输出, 15 Restal 、 我们的Seal- Resting 工具显示Sistring 的Sistring 15 Restal 工具, 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
writage安装及使用
黑白之道
9+阅读 · 2017年11月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月15日
Arxiv
0+阅读 · 2022年1月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
writage安装及使用
黑白之道
9+阅读 · 2017年11月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员