Stochastic PDE eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a simple multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper [Gilbert and Scheichl, 2022], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results.
翻译:物理科学和工程学的若干应用的不确定性,例如结构振动分析、核反应堆或光晶体结构的临界性、核反应堆或光晶体结晶结构的临界性等,是量化物理科学和工程学若干应用的不确定性的有用模型。本文介绍了一种简单的多层次准蒙特卡罗(MLQMC)方法,以近似于精密分析这种算法错误的简单多层次准蒙特卡罗(MLQMC)方法。在错误分析中,关键步骤要求同时将电离功能的混合衍生物与可数多相容的随机和空间变量的系列扩展联系起来。在对等依赖性更加平稳的假设下,我们的分析还扩展到了高层次空间域的离散和对光谱参数域的分解。为了接近预期,我们采用了随机改动的拉蒂卡罗特规则。本文主要致力于对这一算法的错误进行严格分析。一个关键步骤要求同时将电离功能的混合衍生物与光学和空间变量联系起来。在对准依赖性假设的更平稳的假设下,我们的分析还延伸到了多层次的高度高度的准-级准-级准光谱值、准磁值准磁值的准磁值,以及SchLx的扩展结果。