The concept of a uniform interpolant for a quantifier-free formula from a given formula with a list of symbols, while well-known in the logic literature, has been unknown to the formal methods and automated reasoning community. This concept is precisely defined. Two algorithms for computing quantifier-free uniform interpolants of the theory of equality over uninterpreted symbols (EUF) endowed with a list of symbols to be eliminated are proposed. The first algorithm is non-deterministic and generates a uniform interpolant expressed as a disjunction of conjunctions of literals, whereas the second algorithm gives a compact representation of a uniform interpolant as a conjunction of Horn clauses. Both algorithms exploit efficient dedicated DAG representations of terms. Correctness and completeness proofs are supplied, using arguments combining rewrite techniques with model theory.


翻译:逻辑文献中广为人知,但正式方法和自动推理界却不知道,对某一公式中具有标志清单的量化无公式的统一内插概念,虽然在逻辑文献中也广为人知,但对正式方法和自动推理界却不为人所知。这个概念是准确界定的。两种计算对非解释符号(EUF)平等理论的无量化无计量统一内插法,并配有一份要删除的符号清单。第一个算法是非决定性的,产生一种统一的内插法,以不同字词的交汇形式表示,而第二种算法则以统一内插法作为合合合合合合合合合合合合合合合合合合合合的词。两种算法都利用高效率的专用DAG术语表达方式。提供了正确性和完整性证据,使用将重写技术与模型理论相结合的论据。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
35+阅读 · 2020年1月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员