Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of $N$ interacting auxiliary chains targeting tempered versions of the target distribution to improve the exploration of the state-space. We provide here a new perspective on these highly parallel algorithms and their tuning by identifying and formalizing a sharp divide in the behaviour and performance of reversible versus non-reversible PT schemes. We show theoretically and empirically that a class of non-reversible PT methods dominates its reversible counterparts and identify distinct scaling limits for the non-reversible and reversible schemes, the former being a piecewise-deterministic Markov process and the latter a diffusion. These results are exploited to identify the optimal annealing schedule for non-reversible PT and to develop an iterative scheme approximating this schedule. We provide a wide range of numerical examples supporting our theoretical and methodological contributions. The proposed methodology is applicable to sample from a distribution $\pi$ with a density $L$ with respect to a reference distribution $\pi_0$ and compute the normalizing constant. A typical use case is when $\pi_0$ is a prior distribution, $L$ a likelihood function and $\pi$ the corresponding posterior.
翻译:平行调制(PT)法是马可夫连锁Monte Carlo计划的一个受欢迎的类别,用来抽样复杂的高维概率分布,它们依靠一套以目标分布的温和版本为目标、以温和版本为目标的相互互动的辅助链,以更好地探索国家空间。我们在此对这些高度平行的算法及其调适提供新的视角,方法是查明和正式确定可逆与不可逆的PT计划的行为和表现之间的巨大差别,并制订符合这一时间表的迭接办法。我们从理论上和经验上显示,一类不可逆的PT方法主宰着其可逆的对应方法,并为不可逆和可逆的分布方案确定不同的缩放限制,前者是分解的马尔多夫进程,后者是分解的,后者是片分解马多夫进程。这些结果被用来确定不可逆的PTPT计划的最佳折合计划时间表,并开发一个符合这一时间表的迭接机制。我们提供了广泛的数字例子来支持我们的理论和方法贡献。拟议方法适用于一个以美元计价发行的样本,其密度为美元,与可逆和可逆可逆可逆可逆可逆可逆的对应的对应的公式,前者是分解的马尔化的马达美元。