The $k$-Opt and Lin-Kernighan algorithm are two of the most important local search approaches for the Metric TSP. Both start with an arbitrary tour and make local improvements in each step to get a shorter tour. We show that for any fixed $k\geq 3$ the approximation ratio of the $k$-Opt algorithm for Metric TSP is $O(\sqrt[k]{n})$. Assuming the Erd\H{o}s girth conjecture, we prove a matching lower bound of $\Omega(\sqrt[k]{n})$. Unconditionally, we obtain matching bounds for $k=3,4,6$ and a lower bound of $\Omega(n^{\frac{2}{3k-3}})$. Our most general bounds depend on the values of a function from extremal graph theory and are tight up to a factor logarithmic in the number of vertices unconditionally. Moreover, all the upper bounds also apply to a parameterized version of the Lin-Kernighan algorithm with appropriate parameters. We also show that the approximation ratio of $k$-Opt for Graph TSP is $\Omega\left(\frac{\log(n)}{\log\log(n)}\right)$ and $O\left(\left(\frac{\log(n)}{\log\log(n)}\right)^{\log_2(9)+\epsilon}\right)$ for all $\epsilon>0$. For the (1,2)-TSP we give a lower bound of $\frac{11}{10}$ on the approximation ratio of the $k$-improv and $k$-Opt algorithm for arbitrary fixed $k$.


翻译:$k$- Opt 和 Lin- Kernighan 算法是Metric TSP 最重要的两种本地搜索方法。 两者都以任意的巡航为起点, 并在每步中进行本地改进以获得较短的巡航。 我们显示, 对于任何固定的 $k\geq 3$, Metri TSP 的 $k$- Opt 算法的近似比值为$O( sqrt[ k]{} kn} 。 假设 Erd\ H} girth 测算, 我们证明匹配的比值更低( $@ tqrt$[ k] 。 美元% t- kn_ t- krickral_ t- krickral_ rickral) 的比值为 。 我们最普通的比值取决于一个函数的值, 离子理论的值, 并且更接近于一个要素值 。 此外, 所有的上边框也适用于 Lin- Krickn\\\ rickral_ ral_ 美元的 ral_ ral_ ral_ ral 的比值( $) 。

0
下载
关闭预览

相关内容

【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
162+阅读 · 2020年11月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
11+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月2日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员