We examine quadratic surfaces in 3-space that are tangent to nine given figures. These figures can be points, lines, planes or quadrics. The numbers of tangent quadrics were determined by Hermann Schubert in 1879. We study the associated systems of polynomial equations, also in the space of complete quadrics, and we solve them using certified numerical methods. Our aim is to show that Schubert's problems are fully real.
翻译:我们检查3个空格中的正切至9个给定数字的二次方形表面。 这些数字可以是点、 线、 平面或四位数。 相切的四方数是赫曼·舒伯特在1879年决定的。 我们研究多元方程的相关系统, 也是在完整的四位数空间里, 我们用经认证的数字方法来解决它们。 我们的目标是显示舒伯特的问题是完全真实的。