We study the problem of deciding reconfigurability of target sets of a graph. Given a graph $G$ with vertex thresholds $\tau$, consider a dynamic process in which vertex $v$ becomes activated once at least $\tau(v)$ of its neighbors are activated. A vertex set $S$ is called a target set if all vertices of $G$ would be activated when initially activating vertices of $S$. In the Target Set Reconfiguration problem, given two target sets $X$ and $Y$ of the same size, we are required to determine whether $X$ can be transformed into $Y$ by repeatedly swapping one vertex in the current set with another vertex not in the current set preserving every intermediate set as a target set. In this paper, we investigate the complexity of Target Set Reconfiguration in restricted cases. On the hardness side, we prove that Target Set Reconfiguration is PSPACE-complete on bipartite planar graphs of degree $3$ and $4$ and of threshold $2$, bipartite $3$-regular graphs and planar $3$-regular graphs of threshold $1$ and $2$, and split graphs, which is in contrast to the fact that a special case called Vertex Cover Reconfiguration is in P for the last graph class. On the positive side, we present a polynomial-time algorithm for Target Set Reconfiguration on graphs of maximum degree $2$ and trees. The latter result can be thought of as a generalization of that for Vertex Cover Reconfiguration.
翻译:我们研究如何决定某一图表目标集的可重新配置问题。 在目标设置重新配置问题中, 以两个目标为单位, 美元和相同大小的美元为单位, 我们必须考虑到一个动态过程, 在其中, 顶端美元一旦启动至少$\tau( v)美元时, 顶点美元就会被激活。 顶点美元 设置 $S$ 将被称为一个目标 。 如果在初始启动“ $S$” 的旋转时, 启动“ $G$” 的目标组就会被激活。 在目标设置重新配置问题中, 鉴于两个目标为美元和相同大小的“ 美元”, 我们需要确定, 美元是否可以通过反复互换当前设置的顶点美元来激活顶点, 顶点美元 。 在本文中, 顶点 目标设置 重新配置 。 在“ 美元 美元 美元 美元 ” 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 。