The fireworks algorithm is an optimization algorithm for simulating the explosion phenomenon of fireworks. Because of its fast convergence and high precision, it is widely used in pattern recognition, optimal scheduling, and other fields. However, most of the existing research work on the fireworks algorithm is improved based on its defects, and little consideration is given to reducing the number of parameters of the fireworks algorithm. The original fireworks algorithm has too many parameters, which increases the cost of algorithm adjustment and is not conducive to engineering applications. In addition, in the fireworks population, the unselected individuals are discarded, thus causing a waste of their location information. To reduce the number of parameters of the original Fireworks Algorithm and make full use of the location information of discarded individuals, we propose a simplified version of the Fireworks Algorithm. It reduces the number of algorithm parameters by redesigning the explosion operator of the fireworks algorithm and constructs an adaptive explosion radius by using the historical optimal information to balance the local mining and global exploration capabilities. The comparative experimental results of function optimization show that the overall performance of our proposed LFWA is better than that of comparative algorithms, such as the fireworks algorithm, particle swarm algorithm, and bat algorithm.
翻译:烟花算法是一种模拟烟花爆炸现象的优化算法。 由于其快速趋同和高度精准, 它被广泛用于模式识别、 优化时间安排和其他领域。 但是, 烟花算法的大部分现有研究工作根据其缺陷得到了改进, 很少考虑减少烟花算法的参数数量。 原烟花算法有太多参数, 增加了算法调整的成本, 不利于工程应用。 此外, 在烟火人群中, 未选中的个人被丢弃, 从而浪费了他们的位置信息。 为了减少原Fireworks Algorithm的参数数量, 并充分利用被丢弃的个人的位置信息。 为了减少原Fireworks Algorithm 的参数数量, 我们提议了一个简化版本的Fireworks Algorithm 参数。 它通过重新设计烟花算法的爆炸操作者, 并通过利用历史最佳信息来平衡当地采矿和全球勘探能力, 构建一个适应性爆炸半径。 功能优化的比较实验结果显示, 我们拟议的LFWAA的总体性工作法比比较算法要好于比较的算法, 例如烟花、 lasswarm 和蝙蝠算法。