The classical Hennessy-Milner theorem says that two states of an image-finite transition system are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper we study this type of result in a general context, moving from transition systems to coalgebras and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and give sufficient conditions on the semantics. The approach is illustrated with logics characterising similarity, divergence and a behavioural metric on automata.
翻译:古典的Hennnesy-Milner论者认为,图象无限过渡系统的两个状态如果而且只有在符合某种模式逻辑中相同的公式时,才有两点不同。 在本文中,我们从一般的角度来研究这种结果,从过渡系统向煤眼转变,从两个相似性转变到共创性。 当一个逻辑充分描述对焦数的硬币上游时,我们通过提供适当和直观的恰当概念,并给语义学提供足够的条件。 这种方法用具有相似性、差异性的逻辑和对自动磁体的行为指标来说明。