Analogy-making gives rise to reasoning, abstraction, flexible categorization and counterfactual inference -- abilities lacking in even the best AI systems today. Much research has suggested that analogies are key to non-brittle systems that can adapt to new domains. Despite their importance, analogies received little attention in the NLP community, with most research focusing on simple word analogies. Work that tackled more complex analogies relied heavily on manually constructed, hard-to-scale input representations. In this work, we explore a more realistic, challenging setup: our input is a pair of natural language procedural texts, describing a situation or a process (e.g., how the heart works/how a pump works). Our goal is to automatically extract entities and their relations from the text and find a mapping between the different domains based on relational similarity (e.g., blood is mapped to water). We develop an interpretable, scalable algorithm and demonstrate that it identifies the correct mappings 87% of the time for procedural texts and 94% for stories from cognitive-psychology literature. We show it can extract analogies from a large dataset of procedural texts, achieving 79% precision (analogy prevalence in data: 3%). Lastly, we demonstrate that our algorithm is robust to paraphrasing the input texts.


翻译:模拟分析产生了推理、抽象、灵活分类和反事实推论 -- -- 甚至当今最好的AI系统都缺乏这种能力。许多研究表明,模拟是非小系统的关键,能够适应新的领域。尽管它们很重要,但模拟在NLP社区却很少受到重视,而大部分研究都集中在简单的单词类比上。处理更复杂的类比的工作在很大程度上依赖于手工构建的、难以到规模的投入表述。在这项工作中,我们探索了一个更现实、更具挑战性的设置:我们的投入是一对自然语言的程序性文本,描述一种情况或过程(例如心脏如何工作/如何工作)。我们的目标是从文本中自动提取实体及其关系,并找到基于关系相似的不同领域(例如血向水的绘图)之间的图谱。我们开发了一种可解释、可缩放的算法,并表明它确定了87%的程序性文本时间和94%的认知心理学文献故事。我们展示了它能够从一个大型数据样本中提取的类比,我们在最后的文本中发现了一种精确度:我们79 %的算法。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员