Analogy-making gives rise to reasoning, abstraction, flexible categorization and counterfactual inference -- abilities lacking in even the best AI systems today. Much research has suggested that analogies are key to non-brittle systems that can adapt to new domains. Despite their importance, analogies received little attention in the NLP community, with most research focusing on simple word analogies. Work that tackled more complex analogies relied heavily on manually constructed, hard-to-scale input representations. In this work, we explore a more realistic, challenging setup: our input is a pair of natural language procedural texts, describing a situation or a process (e.g., how the heart works/how a pump works). Our goal is to automatically extract entities and their relations from the text and find a mapping between the different domains based on relational similarity (e.g., blood is mapped to water). We develop an interpretable, scalable algorithm and demonstrate that it identifies the correct mappings 87% of the time for procedural texts and 94% for stories from cognitive-psychology literature. We show it can extract analogies from a large dataset of procedural texts, achieving 79% precision (analogy prevalence in data: 3%). Lastly, we demonstrate that our algorithm is robust to paraphrasing the input texts.
翻译:模拟分析产生了推理、抽象、灵活分类和反事实推论 -- -- 甚至当今最好的AI系统都缺乏这种能力。许多研究表明,模拟是非小系统的关键,能够适应新的领域。尽管它们很重要,但模拟在NLP社区却很少受到重视,而大部分研究都集中在简单的单词类比上。处理更复杂的类比的工作在很大程度上依赖于手工构建的、难以到规模的投入表述。在这项工作中,我们探索了一个更现实、更具挑战性的设置:我们的投入是一对自然语言的程序性文本,描述一种情况或过程(例如心脏如何工作/如何工作)。我们的目标是从文本中自动提取实体及其关系,并找到基于关系相似的不同领域(例如血向水的绘图)之间的图谱。我们开发了一种可解释、可缩放的算法,并表明它确定了87%的程序性文本时间和94%的认知心理学文献故事。我们展示了它能够从一个大型数据样本中提取的类比,我们在最后的文本中发现了一种精确度:我们79 %的算法。