Acute brain dysfunctions (ABD), which include coma and delirium, are prevalent in the ICU, especially among older patients. The current approach in manual assessment of ABD by care providers may be sporadic and subjective. Hence, there exists a need for a data-driven robust system automating the assessment and prediction of ABD. In this work, we develop a machine learning system for real-time prediction of ADB using Electronic Health Record (HER) data. Our data processing pipeline enables integration of static and temporal data, and extraction of features relevant to ABD. We train several state-of-the-art transformer models and baseline machine learning models including CatBoost and XGB on the data that was collected from patients admitted to the ICU at UF Shands Hospital. We demonstrate the efficacy of our system for tasks related to acute brain dysfunction including binary classification of brain acuity and multi-class classification (i.e., coma, delirium, death, or normal), achieving a mean AUROC of 0.953 on our Long-former implementation. Our system can then be deployed for real-time prediction of ADB in ICUs to reduce the number of incidents caused by ABD. Moreover, the real-time system has the potential to reduce costs, duration of patients stays in the ICU, and mortality among those afflicted.
翻译:急性脑功能障碍(ABD) 包括昏迷和癫痫在内的急性脑功能障碍(ABD)在伊斯兰法院联盟中非常普遍,特别是在老年病人中。目前由护理提供者人工评估ABD的方法可能是零星的和主观的。因此,需要有一个数据驱动的稳健系统来自动评估和预测ABD。在这项工作中,我们开发了一个机器学习系统,以便利用电子健康记录(HER)数据实时预测亚银。我们的数据处理管道能够整合静态和时间数据,并提取与ABD有关的特征。我们培训了一些最先进的变压器模型和基线机器学习模型,包括CatBoost和XGB。然后,我们系统可以用来实时预测从UF Shands医院被接纳到伊斯兰法院联盟的病人中收集的数据。我们展示了我们系统在与急性脑功能障碍有关的任务方面的功效,包括大脑的二元分级分类和多级分类(即昏迷、痢疾、死亡或正常),实现与ABD有关的静态数据,在我们的远程执行中达到0.953的平均A。我们的系统可以用来实时预测AB的死亡率,从而降低ICAD在IC公司中的死亡率。</s>