Data-driven problem solving in many real-world applications involves analysis of time-dependent multivariate data, for which dimensionality reduction (DR) methods are often used to uncover the intrinsic structure and features of the data. However, DR is usually applied to a subset of data that is either single-time-point multivariate or univariate time-series, resulting in the need to manually examine and correlate the DR results out of different data subsets. When the number of dimensions is large either in terms of the number of time points or attributes, this manual task becomes too tedious and infeasible. In this paper, we present MulTiDR, a new DR framework that enables processing of time-dependent multivariate data as a whole to provide a comprehensive overview of the data. With the framework, we employ DR in two steps. When treating the instances, time points, and attributes of the data as a 3D array, the first DR step reduces the three axes of the array to two, and the second DR step visualizes the data in a lower-dimensional space. In addition, by coupling with a contrastive learning method and interactive visualizations, our framework enhances analysts' ability to interpret DR results. We demonstrate the effectiveness of our framework with four case studies using real-world datasets.
翻译:在许多现实世界应用中,数据驱动问题的解决涉及对基于时间的多变量数据的分析,对于这些数据,往往使用维度减少(DR)方法来发现数据的内在结构和特征。然而,DR通常适用于一组数据,即单时间点多变量数据或单天体时间序列数据,因此需要从不同的数据子组对DR结果进行人工检查和联系。如果从时间点或属性的数量来看,维度数量很大,这一人工任务就会变得过于乏味和不可行。在本文件中,我们介绍一个新的DR框架MulTiDR,这个新的DR框架能够处理整个基于时间的多变量数据,以提供数据的全面概览。根据这个框架,我们采用DR分为两步。当将数据的情况、时间点和属性作为3D阵列处理时,第一个DR步骤将阵列的三个轴减为两个,而第二个DR步则将数据在较低维度的空间进行视觉化。此外,我们用对比性的数据分析框架与对比性分析模型分析,我们用对比性分析模型来提高我们的数据格式分析。