We propose the novel use of a generative adversarial network (GAN) (i) to make predictions in time (PredGAN) and (ii) to assimilate measurements (DA-PredGAN). In the latter case, we take advantage of the natural adjoint-like properties of generative models and the ability to simulate forwards and backwards in time. GANs have received much attention recently, after achieving excellent results for their generation of realistic-looking images. We wish to explore how this property translates to new applications in computational modelling and to exploit the adjoint-like properties for efficient data assimilation. To predict the spread of COVID-19 in an idealised town, we apply these methods to a compartmental model in epidemiology that is able to model space and time variations. To do this, the GAN is set within a reduced-order model (ROM), which uses a low-dimensional space for the spatial distribution of the simulation states. Then the GAN learns the evolution of the low-dimensional states over time. The results show that the proposed methods can accurately predict the evolution of the high-fidelity numerical simulation, and can efficiently assimilate observed data and determine the corresponding model parameters.
翻译:我们提议新颖地使用基因对抗网络(GAN)(一) 及时作出预测(PredGAN)和(二) 同化测量(DA-PredGAN),在后一种情况下,我们利用基因模型的自然连接特性和在时间上模拟前向后向的能力。GAN在产生现实的图像方面取得了极好的成绩之后,最近受到了很多注意。我们希望探索这一属性如何转化为计算模型的新应用,并探索如何利用类似连接的特性来有效地吸收数据。为了预测在理想化的城镇COVID-19的传播,我们将这些方法应用于能够模拟空间和时间变化的流行病学区际模型。为了做到这一点,GAN是在一个简化的模型(ROM)中设置的,该模型使用低维空间来进行模拟状态的空间分布。然后,GAN将了解低维状态随着时间的推移的演变情况。结果显示,拟议的方法可以准确预测高菲度模拟数字模拟的演变情况,并且能够有效地将观测到的数据进行同化。