最新《生成式对抗网络GAN进展》论文

2019 年 4 月 5 日 专知
最新《生成式对抗网络GAN进展》论文

【导读】生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。最近来自Maciej Zamorski等学者简述了关于GAN的进展论文,值得一看。


【论文便捷下载】

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“GAN2019” 就可以获取《生成式对抗网络GAN进展》的下载链接~ 

在传统的生成模型中,良好的数据表示常常是良好的机器学习模型的基础。它可以链接到编码隐藏在原始数据中的更多解释因子的良好表示。生成对抗网络(GANs)是生成模型的一个子类,它能够以无监督和半监督的方式学习表示,随着GANs的发明,我们现在能够从一个简单的先验分布到一个目标数据分布的良好映射。本文以学习潜在空间表示为重点,综述了近年来GAN算法的研究进展。






-END-

专 · 知

专知《深度学习:算法到实战》课程全部完成!520+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询《深度学习:算法到实战》课程,咨询技术商务合作~

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
92

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

【导读】慕尼黑大学开设的《高级深度学习》技术课程,重点介绍计算机视觉的前沿深度学习技术。最新一期介绍了《生成式对抗网络》进展,讲述了GAN的知识体系,值得关注。

成为VIP会员查看完整内容
0
120
小贴士
相关论文
Seeing What a GAN Cannot Generate
David Bau,Jun-Yan Zhu,Jonas Wulff,William Peebles,Hendrik Strobelt,Bolei Zhou,Antonio Torralba
6+阅读 · 2019年10月24日
Generative Adversarial Network Architectures For Image Synthesis Using Capsule Networks
Yash Upadhyay,Paul Schrater
3+阅读 · 2018年11月20日
He Huang,Changhu Wang,Philip S. Yu,Chang-Dong Wang
6+阅读 · 2018年11月12日
ClusterGAN : Latent Space Clustering in Generative Adversarial Networks
Sudipto Mukherjee,Himanshu Asnani,Eugene Lin,Sreeram Kannan
5+阅读 · 2018年9月10日
Han Zhang,Ian Goodfellow,Dimitris Metaxas,Augustus Odena
5+阅读 · 2018年5月21日
Liwei Cai,William Yang Wang
6+阅读 · 2018年4月16日
Christopher P. Burgess,Irina Higgins,Arka Pal,Loic Matthey,Nick Watters,Guillaume Desjardins,Alexander Lerchner
3+阅读 · 2018年4月10日
Chaowei Xiao,Bo Li,Jun-Yan Zhu,Warren He,Mingyan Liu,Dawn Song
9+阅读 · 2018年1月15日
Antonia Creswell,Anil Anthony Bharath
6+阅读 · 2018年1月4日
Yunjey Choi,Minje Choi,Munyoung Kim,Jung-Woo Ha,Sunghun Kim,Jaegul Choo
5+阅读 · 2017年11月24日
Top