Many policies in the US are determined locally, e.g., at the county-level. Local policy regimes provide flexibility between regions, but may become less effective in the presence of geographic spillovers, where populations circumvent local restrictions by traveling to less restricted regions nearby. Due to the endogenous nature of policymaking, there have been few opportunities to reliably estimate causal spillover effects or evaluate their impact on local policies. In this work, we identify a novel setting and develop a suitable methodology that allow us to make unconfounded estimates of spillover effects of local policies. Focusing on California's Blueprint for a Safer Economy, we leverage how county-level mobility restrictions were deterministically set by public COVID-19 severity statistics, enabling a regression discontinuity design framework to estimate spillovers between counties. We estimate these effects using a mobility network with billions of timestamped edges and find significant spillover movement, with larger effects in retail, eating places, and gyms. Contrasting local and global policy regimes, our spillover estimates suggest that county-level restrictions are only 54% as effective as statewide restrictions at reducing mobility. However, an intermediate strategy of macro-county restrictions -- where we optimize county partitions by solving a minimum k-cut problem on a graph weighted by our spillover estimates -- can recover over 90% of statewide mobility reductions, while maintaining substantial flexibility between counties.


翻译:美国的许多政策都是由当地决定的,例如州一级的政策。地方政策制度在各地区之间提供灵活性,但在地理外溢效应出现时,地方政策制度可能变得不那么有效,在地理外溢效应的情况下,人口通过前往附近限制较少的地区而规避地方限制。由于决策的内在性质,没有多少机会可靠地估计因果外溢效应或评估其对地方政策的影响。在这项工作中,我们确定了一个新的环境,并制定了适当的方法,使我们能够对地方政策的溢出效应作出没有根据的估算。以加利福尼亚的《更安全经济蓝图》为重点,我们利用由公共COVI-19严重程度统计数据确定的县一级流动限制是如何决定性的,从而使得回归不连续设计框架能够估计各州之间的外溢效应。我们利用具有数十亿个时间亮的边缘的流动网络来估计这些效应,并发现对地方政策的外溢效应对零售、饮食场所和健身房的影响更大。与地方和全球政策制度相对,我们的外溢效应估计表明,县一级的限制只有54 %作为州范围限制减少流动性的有效手段。然而,一个中间的宏观反向波动设计框架框架可以用来估计各州之间的反向性弹性,而我们通过最大幅度地缩小了90个州范围的州范围的汇率缩小的州范围,从而维持了我们的州范围缩小的汇率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员