We study fair allocation of indivisible goods among additive agents with feasibility constraints. In these settings, every agent is restricted to get a bundle among a specified set of feasible bundles. Such scenarios have been of great interest to the AI community due to their applicability to real-world problems. Following some impossibility results, we restrict attention to matroid feasibility constraints that capture natural scenarios, such as the allocation of shifts to medical doctors or conference papers to referees. We focus on the common fairness notion of envy-freeness up to one good (EF1). Previous algorithms for finding EF1 allocations are either restricted to agents with identical feasibility constraints, or allow free disposal of items. A major open problem is the existence of EF1 complete allocations among heterogeneous agents, where the heterogeneity is both in the agents' feasibility constraints and in their valuations. In this work, we make progress on this problem by providing positive and negative results for different matroid and valuation types. Among other results, we devise polynomial-time algorithms for finding EF1 allocations in the following settings: (i) n agents with heterogeneous partition matroids and heterogeneous binary valuations, (ii) 2 agents with heterogeneous partition matroids and heterogeneous valuations, and (iii) at most 3 agents with identical arbitrary matroids and heterogeneous binary valuations.
翻译:我们研究的是在具有可行性限制的添加剂中公平分配不可分割货物的问题,在这些环境中,每种代理都局限于在一组特定的可行性捆包中捆绑。这种情景对于AI社区非常感兴趣,因为它们适用于现实世界的问题。在取得了一些不可能的结果之后,我们把注意力限制在能够捕捉自然情景的机器人可行性限制上,例如将轮班分配给医生或向推荐人提供会议文件等。我们侧重于一种商品的无嫉妒的常见公平概念(EF1)。在这些环境中,以往用于寻找EF1分配的算法要么局限于具有相同可行性限制的代理人,要么允许自由处置物品。一个主要的公开问题是,不同代理人之间有EF1完全的分配,这种分配既存在于代理人的可行性限制中,也存在于其估价中。在这项工作中,我们通过为不同的配料和估价类型提供正负结果,从而在这一问题上取得进展。除其他结果外,我们设计了在以下环境中找到EF1分配的多种时间算法:(i) 具有混类配方和可变式双数双数双数的混合物估价。(ii) 与多数的制制模质和制模质的代数的代数剂,(三) 和制的代数制) 和制制制的代数制的代数制的代理人和制的代数制的代数。