We consider a singularly perturbed time-dependent problem with a shift term in space. On appropriately defined layer adapted meshes of Dur\'{a}n- and S-type we derive a-priori error estimates for the stationary problem. Using a discontinuous Galerkin method in time we obtain error estimates for the full discretisation. Introduction of a weighted scalar products and norms allows us to estimate the error of the time-dependent problem in energy and balanced norm. So far it was open to prove such a result. Error estimates in the energy norm is for the standard finite element discretization in space, and for the error estimate in the balanced norm the computation of the numerical solution is changed by using a different bilinear form. Some numerical results are given to confirm the predicted theory and to show the effect of shifts on the solution.
翻译:我们用空间的变换期来考虑一个异常扰动的时间依赖问题。 在适当定义的层上,我们根据Dur\'{a}n-和S-型的经调整的介质得出固定问题的优先误差估计数。 在获得完全分离的误差估计数时,我们使用不连续的加列尔金方法。 引入加权的标价产品和规范可以让我们估计能源和平衡规范中时间依赖问题的误差。 到目前为止,它可以证明这一结果。 能源规范中的误差估计数是针对空间标准限分解元素的误差估计数,而平衡规范中的误差估计数则使用不同的双线格式来改变数字解决方案的计算。 提供了一些数字结果,以证实预测的理论,并显示变化对解决方案的影响。