When extending inferences from a randomized trial to a new target population, an assumption of transportability of difference effect measures (e.g., conditional average treatment effects) -- or even stronger assumptions of transportability in expectation or distribution of potential outcomes -- is invoked to identify the marginal causal mean difference in the target population. However, many clinical investigators believe that relative effect measures conditional on covariates, such as conditional risk ratios and mean ratios, are more likely to be ``transportable'' across populations compared with difference effect measures. Here, we examine the identification and estimation of the marginal counterfactual mean difference and ratio under a transportability assumption for conditional relative effect measures. We obtain identification results for two scenarios that often arise in practice when individuals in the target population (1) only have access to the control treatment, or (2) have access to the control and other treatments but not necessarily the experimental treatment evaluated in the trial. We then propose multiply robust and nonparametric efficient estimators that allow for the use of data-adaptive methods (e.g., machine learning techniques) to model the nuisance parameters. We examine the performance of the methods in simulation studies and illustrate their use with data from two trials of paliperidone for patients with schizophrenia. We conclude that the proposed methods are attractive when background knowledge suggests that the transportability assumption for conditional relative effect measures is more plausible than alternative assumptions.
翻译:暂无翻译