Unsupervised learning-based medical image registration approaches have witnessed rapid development in recent years. We propose to revisit a commonly ignored while simple and well-established principle: recursive refinement of deformation vector fields across scales. We introduce a recursive refinement network (RRN) for unsupervised medical image registration, to extract multi-scale features, construct normalized local cost correlation volume and recursively refine volumetric deformation vector fields. RRN achieves state of the art performance for 3D registration of expiratory-inspiratory pairs of CT lung scans. On DirLab COPDGene dataset, RRN returns an average Target Registration Error (TRE) of 0.83 mm, which corresponds to a 13% error reduction from the best result presented in the leaderboard. In addition to comparison with conventional methods, RRN leads to 89% error reduction compared to deep-learning-based peer approaches.
翻译:近些年来,未经监督的基于学习的医学图像登记方法取得了迅速的发展。我们建议重新审视一个通常被忽视的、简单和既定的原则:对不同比例的变形矢量场进行循环完善;我们引入一个循环完善网络(RRN),用于不受监督的医学图像登记、提取多尺度特征、构建当地成本相关量的正常化和再生地改进体积变形矢量场。RRN实现了三维的CT肺扫瞄实验实验室实验性对口的先进性能。在DirLab COPDGene数据集中,RRN返回平均目标登记错误0.83毫米,相当于比领导板上显示的最佳结果减少13%。除了与常规方法相比,RRN还导致89%的误差减少,与深学习的同侪方法相比。