Let $\mathscr{G}$ be the class of plane graphs without triangles normally adjacent to $8^{-}$-cycles, without $4$-cycles normally adjacent to $6^{-}$-cycles, and without normally adjacent $5$-cycles. In this paper, it is shown that every graph in $\mathscr{G}$ is $3$-choosable. Instead of proving this result, we directly prove a stronger result in the form of ``weakly'' DP-$3$-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without $4$-, $6$-, $8$-cycles is $3$-choosable, and every planar graph without $4$-, $5$-, $7$-, $8$-cycles is $3$-choosable. In the third section, using almost the same technique, we prove that the vertex set of every graph in $\mathscr{G}$ can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is discussed.
翻译:让$mathscr{G}美元成为平面图的一类,没有通常与8美元周期相邻的三角形,没有通常与6美元周期相邻的四美元周期,没有通常与6美元周期相邻的四美元周期,没有通常相邻的五美元周期。在本文中,显示美元每张图都是可选择的,美元每张图都是可选择的,没有4美元、5美元、7美元、8美元周期的每张图都是可选择的。我们没有证明这一结果,而是以“63美元” DP-3美元的彩色形式直接证明一个更强有力的结果。在第三节中,主要理论改善了[J. 组合. Theory Ser. B 129(2018) 38-54;欧洲J. 组合82 (2019) 102-995)的结果。因此,每张平面图没有4美元、6美元、8美元和8美元周期都是可行的。每个平面图没有4美元、5美元、7美元、8美元、8美元周期是可选择的。在第三节中,使用几乎相同的技术,我们证明每张的脊椎图都是独立的,每张的底图都可以加强了。