Data dependencies have been extended to graphs to characterize topological and value constraints. Existing data dependencies are defined to capture inconsistencies in static graphs. Nevertheless, inconsistencies may occur over evolving graphs and only for certain time periods. The need for capturing such inconsistencies in temporal graphs is evident in anomaly detection and predictive dynamic network analysis. This paper introduces a class of data dependencies called Temporal Graph Functional Dependencies (TGFDs). TGFDs generalize functional dependencies to temporal graphs as a sequence of graph snapshots that are induced by time intervals, and enforce both topological constraints and attribute value dependencies that must be satisfied by these snapshots. (1) We establish the complexity results for the satisfiability and implication problems of TGFDs. (2) We propose a sound and complete axiomatization system for TGFDs. (3) We also present efficient parallel algorithms to detect inconsistencies in temporal graphs as violations of TGFDs. The algorithm exploits data and temporal locality induced by time intervals, and uses incremental pattern matching and load balancing strategies to enable feasible error detection in large temporal graphs. Using real datasets, we experimentally verify that our algorithms achieve lower runtimes compared to existing baselines, while improving the accuracy over error detection using existing graph data constraints, e.g., GFDs and GTARs with 55% and 74% gain in F1-score, respectively.


翻译:数据依赖性已扩大到图表,以说明地形和价值限制的特征; 现有的数据依赖性被界定,以捕取静态图表中的不一致之处; 然而,在变化中的图表中可能出现不一致,而且只在一定的一段时间内出现不一致; 在异常探测和预测动态网络分析中,明显需要在时间图表中捕捉这种不一致之处; 本文介绍了一组数据依赖性的数据依赖性,称为Temoral 图形的功能依赖性,以描述表层和价值限制的特征限制和价值限制的特征; 将现有数据依赖性一般地扩大到图表,以时间间隔为诱导的图时图片截图,并强制执行表性限制和属性依赖性值的不一致性,而这必须由这些快照所满足。 (1) 我们为TGGGFD的可变性和隐性问题和隐含问题确定复杂的结果。 (2) 我们为TGGFFD提出一个健全和完整的分解系统。 (3) 我们还提供高效率的平行算法,以发现违反TGFFD的时针和时间间隔所利用数据和时间差点,并使用渐进模式对战略进行匹配和加平衡战略,以便能够在大型时段内进行可行的测算,同时,用GFLFL,同时进行真正的调查,同时进行实地调查,并进行实地 ; ; 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 的 正在 的 的 的 的 正在 正在 的 的 的 正在 的 的 的 的 的 的 的 的 的 的 正在 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 正在 的 的 的 正在 的 的 正在 正在 正在 的 正在 的 的 的 的 的 正在 正在 的 正在 正在 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员