Future wireless communications are largely inclined to deploy massive numbers of antennas at the base stations (BSs) by leveraging cost- and energy-efficient as well as environmentally friendly antenna arrays. The emerging technology of dynamic metasurface antennas (DMAs) is promising to realize such massive antenna arrays with reduced physical size, hardware cost, and power consumption. The goal of this paper is the optimization of the energy efficiency (EE) performance of DMA-assisted massive multiple-input multiple-output (MIMO) wireless communications. Focusing on the uplink, we propose an algorithmic framework for designing the transmit precoding of each multi-antenna user and the DMA tuning strategy at the BS to maximize the EE performance, considering the availability of either instantaneous or statistical channel state information (CSI). Specifically, the proposed framework is shaped around Dinkelbach's transform, alternating optimization, and deterministic equivalent methods. In addition, we obtain a closed-form solution to the optimal transmit signal directions for the statistical CSI case, which simplifies the corresponding transmission design for the multiple-antenna case. Our numerical results verify the good convergence behavior of the proposed algorithms, and showcase the considerable EE performance gains of the DMA-assisted massive MIMO transmissions over the baseline schemes.
翻译:未来无线通信主要倾向于通过利用成本和能源效率以及环境友好型天线阵列,在基站部署大量天线。新兴的动态超表面天线技术(DMAs)有望实现这种大型天线阵列,其物理规模、硬件成本和电力消耗减少。本文件的目标是优化Dinkelbach的变换、交替优化和确定式等同方法的DMA辅助的大规模多投入多产出(MIMO)无线通信的能效(EEE)性能。我们以上链接为重点,提出一个算法框架,用于设计每个多antenna用户的传输预编码和BSDMA调控战略,以最大限度地提高EE的性能。具体地说,拟议框架围绕Dinkelbach的变换、交替优化和确定式等同方法的节能。此外,我们对统计 CIMO案的信号发送最佳方向有一个封闭式解决方案,它简化了多安纳型用户的相应传输设计。我们的数字结果验证了E-MA的大幅趋同性模型的模型。