This paper focuses on the prevalent performance imbalance in the stages of incremental learning. To avoid obvious stage learning bottlenecks, we propose a brand-new stage-isolation based incremental learning framework, which leverages a series of stage-isolated classifiers to perform the learning task of each stage without the interference of others. To be concrete, to aggregate multiple stage classifiers as a uniform one impartially, we first introduce a temperature-controlled energy metric for indicating the confidence score levels of the stage classifiers. We then propose an anchor-based energy self-normalization strategy to ensure the stage classifiers work at the same energy level. Finally, we design a voting-based inference augmentation strategy for robust inference. The proposed method is rehearsal free and can work for almost all continual learning scenarios. We evaluate the proposed method on four large benchmarks. Extensive results demonstrate the superiority of the proposed method in setting up new state-of-the-art overall performance. \emph{Code is available at} \url{https://github.com/iamwangyabin/ESN}.
翻译:本文侧重于渐进阶段学习阶段的普遍业绩不平衡。 为了避免明显的阶段学习瓶颈,我们建议建立一个基于新阶段的阶段隔离渐进学习框架,利用一系列阶段孤立的分类员,在不受其他阶段干扰的情况下完成每个阶段的学习任务。 具体地说,为了将多个阶段分类员合并为一个统一的阶段,我们首先采用温度控制能源衡量标准,以显示阶段分类员的可信度水平。 然后,我们提出一项基于锚的能源自我正常化战略,以确保阶段分类员在同一能源级别上工作。 最后,我们设计了一个基于投票的推论增强战略,以稳健的推论。提议的方法是免费的,可以用于几乎所有的持续学习情景。我们根据四个大基准评估拟议的方法。广泛的结果表明拟议方法在建立新的“艺术状态”总体性能中的优越性。 \emph{Codede 可以在\url{https://github.com/iamwangyabin/ESN}。