Mixed data arise when observations are described by a mixture of numerical and categorical variables. The R package PCAmixdata extends to this type of data standard multivariate analysis methods which allow description, exploration and visualization of the data. The key techniques/methods included in the package are principal component analysis for mixed data (PCAmix), varimax-like orthogonal rotation for PCAmix, and multiple factor analysis for mixed multi-table data. This paper proposes a unified mathematical presentation of the different methods with common notations, as well as providing a summarised presentation of the three algorithms, with details to help the user understand graphical and numerical outputs of the corresponding R functions. This then allows the user to easily provide relevant interpretations of the results obtained. The three main methods are illustrated on a real dataset composed of four data tables characterizing living conditions in different municipalities in the Gironde region of southwest France.
翻译:当观测用数字变量和绝对变量混合描述时,就会产生混合数据。R包包的五氯苯甲醚mixdata将扩展至这类数据标准多变量分析方法,允许对数据进行描述、探索和可视化。包中包括的关键技术/方法是混合数据(PCAmix)的主要组成部分分析,五氯苯甲醚mix的变量-类似正方位旋转,混合多表格数据的多个要素分析。本文建议对不同方法采用通用符号进行统一的数学列报,并提供三种算法的概要介绍,帮助用户理解相应的R函数的图形和数字输出。然后,使用户能够方便地提供对所获结果的相关解释。三种主要方法在由法国西南部Gironde地区不同城市生活条件的四个数据组组成的真实数据集上演示。