*The following abbreviates the abstract. Please refer to the thesis for the full abstract.* After a disaster, locating and extracting victims quickly is critical because mortality rises rapidly after the first two days. To assist search and rescue teams and improve response times, teams of camera-equipped aerial robots can engage in tasks such as mapping buildings and locating victims. These sensing tasks encapsulate difficult (NP-Hard) problems. One way to simplify planning for these tasks is to focus on maximizing sensing performance over a short time horizon. Specifically, consider the problem of how to select motions for a team of robots to maximize a notion of sensing quality (the sensing objective) over the near future, say by maximizing the amount of unknown space in a map that robots will observe over the next several seconds. By repeating this process regularly, the team can react quickly to new observations as they work to complete the sensing task. In technical terms, this planning and control process forms an example of receding-horizon control. Fortunately, common sensing objectives benefit from well-known monotonicity properties (e.g. submodularity), and greedy algorithms can exploit these monotonicity properties to solve the receding-horizon optimization problems that we study near-optimally. However, greedy algorithms typically force robots to make decisions sequentially so that planning time grows with the number of robots. Further, recent works that investigate sequential greedy planning, have demonstrated that reducing the number of sequential steps while retaining suboptimality guarantees can be hard or impossible. We demonstrate that halting growth in planning time is sometimes possible. To do so, we introduce novel greedy algorithms involving fixed numbers of sequential steps.


翻译:* 缩略以下的抽象内容。 请参考完全抽象的理论。 * 灾难发生后, 快速定位和提取受害者是关键因素, 因为死亡在头两天后迅速上升。 为了协助搜索和救援团队, 并改进反应时间, 由摄像装备的航空机器人团队可以从事诸如绘图建筑物和定位受害者等任务。 这些感测任务包含困难( NP- Hard) 的问题。 简化这些任务规划的方法之一是在短时间范围内最大限度地提高感知性能。 具体地说, 考虑如何为一组机器人选择动作, 以在近期内最大限度地提高感知质量( 感知目标) 的概念。 例如, 协助搜索和救援团队并改进反应时间。 为了协助搜索建筑物和定位受害者, 摄影团队可以对新的观察进行快速反应。 从技术角度讲, 这个规划和控制过程可以成为 递减 horicrical 控制 的范例。 幸运的是, 共同感测目标可以显示, 由已知的单调性特性( e. decoltialalalalalalality) imalalalalalal dequiversal grational gration ritional dequidiversal rititutional ritional gradutional rmals) 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员