This letter focuses on the task of Multi-Target Multi-Camera vehicle tracking. We propose to associate single-camera trajectories into multi-camera global trajectories by training a Graph Convolutional Network. Our approach simultaneously processes all cameras providing a global solution, and it is also robust to large cameras unsynchronizations. Furthermore, we design a new loss function to deal with class imbalance. Our proposal outperforms the related work showing better generalization and without requiring ad-hoc manual annotations or thresholds, unlike compared approaches.
翻译:本信侧重于多目标多镜头多镜头车辆跟踪的任务。 我们提议将单镜头轨迹与多镜头全球轨迹联系起来, 培训“ 图表革命网络 ” 。 我们的方法同时处理提供全球解决方案的所有相机, 并且对大型相机来说也是强大的。 此外, 我们设计了一个新的损失函数来应对阶级不平衡。 我们的提议比相关工作表现得更加笼统, 不需要与比较方法不同的特别手动说明或阈值。