Mining maximal subgraphs with cohesive structures from a bipartite graph has been widely studied. One important cohesive structure on bipartite graphs is k-biplex, where each vertex on one side disconnects at most k vertices on the other side. In this paper, we study the maximal k-biplex enumeration problem which enumerates all maximal k-biplexes. Existing methods suffer from efficiency and/or scalability issues and have the time of waiting for the next output exponential w.r.t. the size of the input bipartite graph (i.e., an exponential delay). In this paper, we adopt a reverse search framework called bTraversal, which corresponds to a depth-first search (DFS) procedure on an implicit solution graph on top of all maximal k-biplexes. We then develop a series of techniques for improving and implementing this framework including (1) carefully selecting an initial solution to start DFS, (2) pruning the vast majority of links from the solution graph of bTraversal, and (3) implementing abstract procedures of the framework. The resulting algorithm is called iTraversal, which has its underlying solution graph significantly sparser than (around 0.1% of) that of bTraversal. Besides, iTraversal provides a guarantee of polynomial delay. Our experimental results on real and synthetic graphs, where the largest one contains more than one billion edges, show that our algorithm is up to four orders of magnitude faster than existing algorithms.
翻译:已经广泛研究了具有来自双面图的一致结构的采矿最大下层结构。 在双面图中,一个重要的一致结构是 k- 双面图, 一方的每个顶点在另一面的 k 顶点上断开。 在本文中, 我们研究了最大 K- 双层点点点点点点问题, 列出了所有最大 k- 双点点。 现有方法存在效率和/ 或可缩放问题, 并且有时间等待下一个输出指数( w.r. t) 的大小, 即输入双面图的大小( 指数延迟 ) 。 在本文中, 我们采用了一个叫做 btraversal 的反向搜索框架框架, 这个叫做 btraversal, 这相当于一个深度搜索( DFS) 程序, 在所有最大k- 双面点上, 我们开发了一系列改进和实施这个框架的技术, 包括 (1) 仔细选择启动 CFDR 的初始解决方案, (2) 运行来自 btravers 的解算图的绝大多数链接, 以及 执行框架的抽象程序。 。 由此而后产生的算算算算算算算算算法, 比我们最大的一个最高级的ITRVILVI- bloveorsal 和最高级的缩数 的缩缩缩缩图, 它提供了比我们的现有的GILVILULLLLLOG 的缩图的基础。