"For how many days during the past 30 days was your mental health not good?" The responses to this question measure self-reported mental health and can be linked to important covariates in the National Health and Nutrition Examination Survey (NHANES). However, these count variables present major distributional challenges: the data are overdispersed, zero-inflated, bounded by 30, and heaped in five- and seven-day increments. To meet these challenges, we design a semiparametric estimation and inference framework for count data regression. The data-generating process is defined by simultaneously transforming and rounding (STAR) a latent Gaussian regression model. The transformation is estimated nonparametrically and the rounding operator ensures the correct support for the discrete and bounded data. Maximum likelihood estimators are computed using an EM algorithm that is compatible with any continuous data model estimable by least squares. STAR regression includes asymptotic hypothesis testing and confidence intervals, variable selection via information criteria, and customized diagnostics. Simulation studies validate the utility of this framework. STAR is deployed to study the factors associated with self-reported mental health and demonstrates substantial improvements in goodness-of-fit compared to existing count data regression models.


翻译:“在过去30天里,你的精神健康状况如何?” 这个问题的回答是衡量自我报告的精神健康状况,可以与国家健康和营养检查调查(NHANES)中的重要共变体联系起来。然而,这些计数变量提出了主要的分布挑战:数据过于分散,零充气,受30个约束,加压5天和7天。为了迎接这些挑战,我们设计了一个计算数据回归的半参数估计和推论框架。数据生成过程的定义是通过同时转换和舍入一个潜值回归模型(STAR)来界定的。这种转换是非对称性的,圆形操作员确保了对离散和受约束数据的正确支持。最大可能性的估算是使用与任何持续数据模型相容的EM算法来计算,这种算法与最小方可以估计的任何连续数据模型相容。STRATAR的回归包括无症状的假设测试和信任间隔,通过信息标准进行变量选择,以及定制的诊断。模拟研究验证了这个框架的效用。STRATAR将部署用于研究与现有回归模型相关的因素,以便比较现有数据回归模型。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Semi-parametric Bayesian Additive Regression Trees
Arxiv
0+阅读 · 2021年8月17日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员