The robustness of visual navigation policies trained through imitation often hinges on the augmentation of the training image-action pairs. Traditionally, this has been done by collecting data from multiple cameras, by using standard data augmentations from computer vision, such as adding random noise to each image, or by synthesizing training images. In this paper we show that there is another practical alternative for data augmentation for visual navigation based on extrapolating viewpoint embeddings and actions nearby the ones observed in the training data. Our method makes use of the geometry of the visual navigation problem in 2D and 3D and relies on policies that are functions of equivariant embeddings, as opposed to images. Given an image-action pair from a training navigation dataset, our neural network model predicts the latent representations of images at nearby viewpoints, using the equivariance property, and augments the dataset. We then train a policy on the augmented dataset. Our simulation results indicate that policies trained in this way exhibit reduced cross-track error, and require fewer interventions compared to policies trained using standard augmentation methods. We also show similar results in autonomous visual navigation by a real ground robot along a path of over 500m.


翻译:通过模仿所培训的视觉导航政策的稳健性往往取决于培训图像-动作配对的增强。 传统上,这是通过从多摄像头收集数据,使用计算机视觉的标准数据增强器,如在每张图像中添加随机噪音,或通过合成培训图像。 在本文中,我们显示,基于外推观点嵌入和培训数据中观测到的数据集周围的动作,为视觉导航提供数据增强的另一个实用替代方法。 我们的方法是使用2D和3D中视觉导航问题的几何测量法,并依靠与图像相反的等同嵌嵌入功能的政策。 鉴于培训导航数据集中的图像增强对齐,我们的神经网络模型预测了附近视图中图像的潜在表现,使用等异属性属性,并强化了数据集。 我们随后对增强的数据集进行了一项政策培训。 我们的模拟结果表明, 以这种方式培训的政策显示的跨轨误减少了, 与使用标准增强方法培训的政策相比, 需要较少的干预措施。 我们还展示了500个实际地面机器人沿直径自主视觉导航法的类似结果。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员