We consider the community recovery problem on a multilayer variant of the hypergraph stochastic block model (HSBM). Each layer is associated with an independent realization of a d-uniform HSBM on N vertices. Given the aggregated number of hyperedges incident to each pair of vertices, represented using a similarity matrix, the goal is to obtain a partition of the N vertices into disjoint communities. In this work, we investigate a semidefinite programming (SDP) approach and obtain information-theoretic conditions on the model parameters that guarantee exact recovery both in the assortative and the disassortative cases.
翻译:我们认为社区恢复问题存在于高光学随机区块模型(HSBM)的多层变体中。 每层都与独立实现N顶端的二元统一HSBM相关。考虑到每对脊椎的顶端事故总数,使用相似的矩阵,目标是将N顶部分割成脱节社区。在这项工作中,我们调查了半无限期程序(SDP)方法,并获得关于模型参数的信息理论条件,这些参数保证了在分解和分解情况下准确恢复的模型参数。