This paper obtains a completeness result for inequational reasoning with applicative terms without variables in a setting where the intended semantic models are the full structures, the full type hierarchies over preorders for the base types. The syntax allows for the specification that a given symbol be interpreted as a monotone function, or an antitone function, or both. There is a natural set of five rules for inequational reasoning. One can add variables and also add a substitution rule, but we observe that this logic would be incomplete for full structures. This is why the completeness result in this paper pertains to terms without variables. Since the completeness is already known for the class of general (Henkin) structures, we are interested in full structures. We present a completeness theorem. Our result is not optimal because we restrict to base preorders which have a weak completeness property: every pair of elements has an upper bound and a lower bound. To compensate we add several rules to the logic. We also present extensions and variations of our completeness result.
翻译:本文获得一个完整性结果, 用于用替代术语进行无变量的等同推理, 而没有变量的设置中, 想要的语义模型是完整的结构, 相对于基础类型预购的完整类型等级结构。 语法允许将特定符号解释为单质函数, 或丙酮函数, 或者两者兼而有之。 有一套自然的五大规则用于等同推理。 我们可以添加变量, 并添加一条替代规则, 但是我们注意到, 这个逻辑对于完整结构来说是不完整的。 这就是为什么本文的完整性结果涉及到没有变量的术语。 由于普通( 亨金) 结构已经知道完整性, 我们感兴趣的是完整的结构。 我们提出了一个完整性的标语。 我们的结果不是最佳的, 因为我们限制基本顺序的完整性属性: 每对元素都有上下限和下限。 为了补偿我们给逻辑添加了几项规则。 我们还展示了完整性结果的扩展和变换 。