Transfer learning is a powerful way to adapt existing deep learning models to new emerging use-cases in remote sensing. Starting from a neural network already trained for semantic segmentation, we propose to modify its label space to swiftly adapt it to new classes under weak supervision. To alleviate the background shift and the catastrophic forgetting problems inherent to this form of continual learning, we compare different regularization terms and leverage a pseudo-label strategy. We experimentally show the relevance of our approach on three public remote sensing datasets. Code is open-source and released in this repository: https://github.com/alteia-ai/ICSS}{https://github.com/alteia-ai/ICSS.
翻译:转让学习是使现有深层学习模式适应遥感中新出现的使用案例的有力方法。从已经受过语言分解训练的神经网络开始,我们提议修改其标签空间,以迅速将其适应于监管不力的新类别。为了减轻背景变化和这种持续学习形式所固有的灾难性遗忘问题,我们比较了不同的正规化条件和假标签战略。我们实验性地展示了我们在三个公共遥感数据集上的做法的相关性。代码是开源的,并公布在这个储存库中:https://github.com/alteia-ai/ICSS_https://github.com/alteia-ai/ICSS。